Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.278
Filtrar
1.
Environ Res ; 252(Pt 2): 118893, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604485

RESUMO

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.

2.
J Funct Biomater ; 15(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667560

RESUMO

The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.

3.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668200

RESUMO

Nitrite monitoring serves as a fundamental practice for protecting public health, preserving environmental quality, ensuring food safety, maintaining industrial safety standards, and optimizing agricultural practices. Although many nitrite sensing methods have been recently developed, the quantification of nitrite remains challenging due to sensitivity and selectivity limitations. In this context, we present the fabrication of enzymeless iron oxide nanoparticle-modified zinc oxide nanorod (α-Fe2O3-ZnO NR) hybrid nanostructure-based nitrite sensor fabrication. The α-Fe2O3-ZnO NR hybrid nanostructure was synthesized using a two-step hydrothermal method and characterized in detail utilizing x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). These analyses confirm the successful synthesis of an α-Fe2O3-ZnO NR hybrid nanostructure, highlighting its morphology, purity, crystallinity, and elemental constituents. The α-Fe2O3-ZnO NR hybrid nanostructure was used to modify the SPCE (screen-printed carbon electrode) for enzymeless nitrite sensor fabrication. The voltammetric methods (i.e., cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) were employed to explore the electrochemical characteristics of α-Fe2O3-ZnO NR/SPCE sensors for nitrite. Upon examination of the sensor's electrochemical behavior across a range of nitrite concentrations (0 to 500 µM), it is evident that the α-Fe2O3-ZnO NR hybrid nanostructure shows an increased response with increasing nitrite concentration. The sensor demonstrates a linear response to nitrite concentrations up to 400 µM, a remarkable sensitivity of 18.10 µA µM-1 cm-2, and a notably low detection threshold of 0.16 µM. Furthermore, its exceptional selectivity, stability, and reproducibility make it an ideal tool for accurately measuring nitrite levels in serum, yielding reliable outcomes. This advancement heralds a significant step forward in the field of environmental monitoring, offering a potent solution for the precise assessment of nitrite pollution.

4.
Nanotechnology ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640906

RESUMO

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2 %) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-Vis) revealed that optical band gap energy of ZnO nanoparticles (~ 3.2 eV) GO-ZnO nanosheets (~ 2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth of E. coli biofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.

5.
Int J Biol Macromol ; : 131604, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641270

RESUMO

This study aims to develop pH-sensitive and controlled release of ciprofloxacin from ciprofloxacin-loaded grafted chitosan-coated zinc oxide nanoparticles (Cip@Gchit/Zn-NPs) for the treatment of bacterial infections in the human colon. For this aim, first, the chitosan-g-poly(itaconic acid) [Chit-g-poly (Itac)] was synthesized via grafting of itaconic acid onto chitosan in the presence of cerium ammonium nitrate (CAN) under an inert atmosphere using conventional methods, while zinc oxide nanoparticles (Zn-NPs) were prepared via sol-gel technique. Characterization of the synthesized Cip@Gchit/Zn-NPs was analyzed using XRD, FT-IR, SEM, TGA, and zeta potential analysis. The antibacterial efficacy of Cip@Gchit/Zn-NPs against three pathogenic bacteria, namely Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, was superior to that of tetracycline reference drugs, as evidenced by larger inhibition zones. Cytotoxicity assessment of Cip@Gchit/Zn-NPs on the human chondrocyte cell line C28/I2 via MTT assay revealed 100 % cell viability at a concentration of 500 µg/mL. The loading efficiency of ciprofloxacin into Gchit/Zn-NPs was evaluated at various ratios, demonstrating lower loading efficiency; however, sustained release of ciprofloxacin from Cip@Gchit/Zn-NPs was excellent, with 98.13 % release observed at pH 7.2 over 10 h. Kinetic analysis of ciprofloxacin release followed the first-order kinetic models.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38629598

RESUMO

Electroactive filament electrodes were synthesized by wet-spinning of cellulose nanofibrils (CNF) followed by femtosecond pulse laser deposition of ZnO (CNF@ZnO). A layer of conducting conjugated polymers was further adsorbed by in situ polymerization of either pyrrole or aniline, yielding systems optimized for electron conduction. The resultant hybrid filaments were thoroughly characterized by imaging, spectroscopy, electrochemical impedance, and small- and wide-angle X-ray scattering. For the filaments using polyaniline, the measured conductivity was a result of the synergy between the inorganic and organic layers, while the contribution was additive in the case of the systems containing polypyrrole. This observation is rationalized by the occurrence of charge transfer between ZnO and polyaniline but not that with polypyrrole. The introduced conductive hybrid filaments displayed a performance that competes with that of metallic counterparts, offering great promise for next-generation filament electrodes based on renewable nanocellulose.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38619314

RESUMO

The photocatalytic degradation process of sulfamethoxazole (SMX) using ZnO in aquatic systems has been systematically studied by varying initial SMX concentration from 0 to 15 mgL-1, ZnO dosage from 0 to 4 gL-1 and UV light intensity at the light source from 0 to 18 W(m-lamp length)-1 at natural pH. Almost complete degradations of SMX were achieved within 120 min for the initial SMX concentration ≤15 mgL-1 with ZnO dosage of 3 gL-1 and UV light intensity of 18 W(m-lamp length)-1. The photocatalytic degradation process was found to be interacted with the dissolved oxygen (DO) consumption. With oxygen supply through the gas-liquid free-surface, the DO concentration decreased significantly in the initial SMX degradation phase and increased asymptotically to the saturated DO concentration after achieving about 80% SMX degradation. The change in DO concentration was probably controlled by the oxygen consumption in the formation of oxygenated radical intermediates. A novel dynamic kinetic model based on the fundamental reactions of photocatalysis and the formation of oxygenated radical intermediates was developed. In the modeling the dynamic concentration profiles of OH radical and DO are considered. The dynamics of SMX degradation process by ZnO was simulated reasonably by the proposed model.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Sulfametoxazol , Antibacterianos/química , Óxido de Zinco/química , Oxigênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química
8.
Plant Cell Rep ; 43(4): 110, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564104

RESUMO

KEY MESSAGE: Nanoparticle pretreatment improved the health of aged Cajanus cajan seeds viz., regulation of redox status, gene expression, and restoration of hormonal homeostasis. Ageing deteriorates the quality of seeds by lowering their vigor and viability, and terminating with loss of germination. These days, nanotechnology has been seen to revolutionize the agricultural sectors, and particularly nano zinc oxide (nZnO) has gained considerable interests due to its distinctive properties. The aim of the present work was to decipher the possibilities of using nZnO to rejuvenate accelerated aged (AA) seeds of Cajanus cajan. Both chemically (CnZnO) and green (GnZnO; synthesized using Moringa oleifera) fabricated nZnOs were characterized via standard techniques to interpret their purity, size, and shape. Experimental results revealed erratic germination with a decline in viability and membrane stability as outcomes of reactive oxygen intermediate (ROI) buildup in AA seeds. Application of nZnO substantially rebated the accrual of ROI, along with enhanced production of antioxidants, α-amylase activity, total sugar, protein and DNA content. Higher level of zinc was assessed qualitatively/ histologically and quantitatively in nZnO pulsed AA seeds, supporting germination without inducing toxicity. Meantime, augmentation in the gibberellic acid with a simultaneous reduction in the abscisic acid level were noted in nZnO invigorated seeds than that determined in the AA seeds, suggesting possible involvement of ROI in hormonal signalling. Furthermore, nZnO-subjected AA seeds unveiled differential expression of aquaporins and cell cycle regulatory genes. Summarizing, among CnZnO and GnZnO, later one holds better potential for a revival of AA seeds of Cajanus cajan by providing considerable tolerance against ageing-associated deterioration via recouping the cellular redox homeostasis, hormonal signaling, and alteration in expression patterns of aquaporin and cell cycle regulatory genes.


Assuntos
Aquaporinas , Cajanus , Óxido de Zinco , Óxido de Zinco/farmacologia , Genes Reguladores , Ciclo Celular
9.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559446

RESUMO

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Otite Média , Infecções Estafilocócicas , Óxido de Zinco , Humanos , Staphylococcus aureus , Radical Hidroxila , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Otite Média/tratamento farmacológico , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
10.
Cureus ; 16(3): e55521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576637

RESUMO

Introduction The utilization of Cymodocea serrulata for the eco-friendly synthesis of zinc oxide nanoparticles, which contain distinguishable nanostructures, presents a cost-effective and environmentally sustainable alternative for producing zinc nanoparticles. The production process of zinc nanoparticles are rich in phytochemicals, which can serve as stabilizing and reducing agents. Zinc nanoparticles can easily pass through bacterial cell walls and reach all cellular components. C. serrulata, is a small submerged angiosperm commonly found in submerged and tidal coastal environments. Aim Analysis of the biological activities of zinc oxide nanoparticles made from C. serrulata leaf extract. Materials and Methods Dry leaves of C. serrulata were ground into a powder, which was then placed into a conical flask and filled with water. Subsequently, the color of the mixture turned black. Next, a 20 mm piece of ZnO was dissolved in a 60 ml sample of distilled water to prepare the metal solution. Following this, a wavelength scan ranging from 200 to 700 nm was conducted using ultraviolet (UV) spectroscopy. After shaking the solution for an hour, a final reading was taken across the UV spectrum. The synthetic sample should also be centrifuged to remove any pellets and subsequently dried in a hot air oven. Result Using nanoscale profiling, the average particle size was measured and found to be less than 100 nm, specifically UV spectrum analysis revealed a notable absorbance value of 47.0 nm, at different angles within the peak height. The wavelength range of the zinc nanoparticles was observed to be between 250 and 350 nm. Conclusion The antibacterial properties of ZnO NPs have been demonstrated through in vitro investigations, indicating their potential application in in vivo studies.

11.
BMC Vet Res ; 20(1): 137, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575964

RESUMO

OBJECTIVES: Fasciolosis is of significant economic and public health importance worldwide. The lack of a successful vaccine and emerging resistance in flukes to the drug of choice, triclabendazole, has initiated the search for alternative approaches. In recent years, metallic nanoparticles have been extensively investigated for their anthelmintic effects. This study investigates the in vitro anthelmintic activity of copper oxide and zinc oxide nanoparticles against Fasciola hepatica. METHODS: The in vitro study was based on egg hatchability test (EHA), adult motility inhibition tests, DNA damage, ROS levels, as well as several biomarkers of oxidative stress, including glutathione peroxidase (GSH) and glutathione S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). For this purpose, different concentrations of copper oxide nanoparticles (CuO-NPs) and Zinc oxide nanoparticles (ZnO-NPs) (1, 4, 8, 12, and 16 ppm) were used to evaluate the anthelmintic effect on different life stages, including egg and adults of Fasciola hepatica, over 24 h. RESULTS: In vitro treatment of F. hepatica worms with both CuO-NPs and ZnO-NPs could significantly increase ROS production and oxidative stress induction (decreased SOD, GST and GSH and increased MDA) compared to control group. CONCLUSIONS: Based on the results, it seems that CuO-NPs and ZnO-NPs may be effective in the control and treatment of F. hepatica infection. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Cobre/farmacologia , Espécies Reativas de Oxigênio , Estresse Oxidativo , Anti-Helmínticos/farmacologia , Dano ao DNA , Superóxido Dismutase/metabolismo , Biomarcadores
12.
Adv Sci (Weinh) ; : e2308976, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582529

RESUMO

Portable and personalized artificial intelligence (AI)-driven sensors mimicking human olfactory and gustatory systems have immense potential for the large-scale deployment and autonomous monitoring systems of Internet of Things (IoT) devices. In this study, an artificial Q-grader comprising surface-engineered zinc oxide (ZnO) thin films is developed as the artificial nose, tongue, and AI-based statistical data analysis as the artificial brain for identifying both aroma and flavor chemicals in coffee beans. A poly(vinylidene fluoride-co-hexafluoropropylene)/ZnO thin film transistor (TFT)-based liquid sensor is the artificial tongue, and an Au, Ag, or Pd nanoparticles/ZnO nanohybrid gas sensor is the artificial nose. In order to classify the flavor of coffee beans (acetic acid (sourness), ethyl butyrate and 2-furanmethanol (sweetness), caffeine (bitterness)) and the origin of coffee beans (Papua New Guinea, Brazil, Ethiopia, and Colombia-decaffeine), rational combination of TFT transfer and dynamic response curves capture the liquids and gases-dependent electrical transport behavior and principal component analysis (PCA)-assisted machine learning (ML) is implemented. A PCA-assisted ML model distinguished the four target flavors with >92% prediction accuracy. ML-based regression model predicts the flavor chemical concentrations with >99% accuracy. Also, the classification model successfully distinguished four different types of coffee-bean with 100% accuracy.

13.
Microsc Res Tech ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558483

RESUMO

Cryptosporidiosis is a global health problem threats life of immunocompromised patients. Allium sativum (A. sativum) is one of the therapeutic options for cryptosporidiosis. This study develops green synthesized ZnO-NPs based on A. sativum extract, and assesses its therapeutic application in treating experimental cryptosporidiosis in immunosuppressed mice. FTIR, scanning electron microscopy, and zeta analyzer were used for characterization of bio ZnO-NPs. The morphology of prepared materials appeared as sponge with many pores on the whole surface that allows the feasibility of bio ZnO-NPs for different biological activities. Its structural analysis was highly stabilized with negative charge surface which indicated for well distribution into the parasite matrix. Twenty-five immunosuppressed Cryptosporidium parvum infected mice, classified into 5 groups were sacrificed at 21th day after infection with evaluation of parasitological, histopathological, oxidative, and proinflammatory biomarkers. Treated mice groups with 50 and 100 mg/kg of AS/ZnO-NPs showed a highly significant decline (79.9% and 83.23%, respectively) in the total number of expelled oocysts. Both doses revealed actual amelioration of the intestinal, hepatic, and pulmonary histopathological lesions. They also significantly produced an increase in GSH values and improved the changes in NO and MDA levels, and showed high anti-inflammatory properties. This study is the first to report green synthesis of ZnO/A. sativum nano-composite as an effective therapy in treating cryptosporidiosis which gave better results than using A. sativum alone. It provides an economical and environment-friendly approach towards novel delivery synthesis for antiparasitic applications. RESEARCH HIGHLIGHTS: Green synthesis of ZnO-NPs was developed using A. sativum extract. The morphology of prepared ZnO-NPs appeared as sponge with many pores on SEM The study evaluates its therapeutic efficacy against murine cryptosporidiosis The green synthesized ZnO-NPs significantly reduced percent of oocyst shedding, improved the pathological changes, and showed high antioxidant and anti-inflammatory potentials.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38564153

RESUMO

Biofilm formation by the pathogenic bacteria generates a serious threat to the public health as it can increase the virulence potential, resistance to drugs, and escape from the host immune response mechanisms. Among the environmental factors that influence the biofilm formation, there are only limited reports available on the role of antimicrobial agents. During the antimicrobial drug administration or application for any purpose, the microbial population can expect to get exposed to the sub-minimum inhibitory concentration (sub-MIC) of the drug which will have an unprecedented impact on microbial responses. Hence, the study has been conducted to investigate the effects of sub-MIC levels of zinc oxide nanoparticles (ZnO NPs) on the biofilm formation of Klebsiella pneumoniae and Staphylococcus aureus. Here, the selected bacteria were primarily screened for the biofilm formation by using the Congo red agar method, and their susceptibility to ZnO NPs was also evaluated. Quantitative difference in biofilm formation by the selected organisms in the presence of ZnO NPs at the sub-MIC level was further carried out by using the microtiter plate-crystal violet assay. Further, the samples were subjected to atomic force microscopy (AFM) analysis to evaluate the properties and pattern of the biofilm modulated under the experimental conditions used. From these, the organisms treated with sub-MIC levels of ZnO NPs were found to have enhanced biofilm formation when compared with the untreated sample. Also, no microbial growth could be observed for the samples treated with the minimum inhibitory concentration (MIC) of ZnO NPs. The results observed in the study provide key insights into the impact of nanomaterials on clinically important microorganisms which demands critical thinking on the antimicrobial use of nanomaterials.

15.
BMC Oral Health ; 24(1): 487, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658909

RESUMO

BACKGROUND: Zinc-oxide eugenol (ZOE) cements are among the most used temporary materials in dentistry. Although ZOE has advantages over other temporary fillers, its mechanical strength is weaker, so researchers are working to improve it. E-glass fibers have emerged as promising reinforcing fibers in recent years due to their strong mechanical behavior, adequate bonding, and acceptable aesthetics. OBJECTIVES: To evaluate and compare the compressive strength, surface microhardness, and solubility of the ZOE and those reinforced with 10 wt.% E-glass fibers. METHODS: A total of 60 ZEO specimens were prepared; 30 specimens were reinforced with 10 wt.% E-glass fibers, considered modified ZOE. The characterization of the E-glass fibers was performed by XRF, SEM, and PSD. The compressive strength, surface microhardness, and solubility were evaluated. Independent sample t-tests were used to statistically assess the data and compare mean values (P ≤ 0.05). RESULTS: The results revealed that the modified ZOE showed a significantly higher mean value of compressive strength and surface microhardness while having a significantly lower mean value of solubility compared to unmodified ZOE (P ≤ 0.05). CONCLUSION: The modified ZOE with 10 wt.% E-glass fibers had the opportunity to be used as permanent filling materials.


Assuntos
Força Compressiva , Vidro , Dureza , Teste de Materiais , Solubilidade , Cimento de Óxido de Zinco e Eugenol , Cimento de Óxido de Zinco e Eugenol/química , Vidro/química , Propriedades de Superfície , Microscopia Eletrônica de Varredura
16.
J Biomater Sci Polym Ed ; : 1-13, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613795

RESUMO

Nanometer zinc oxide (ZnONPs) offers strong antibacterial, wound healing, hemostatic benefits, and UV protection. Additionally, poly(hexamethylene biguanide)hydrochloride (PHMB) is an environmentally friendly polymer with strong bactericidal properties. However, the synergistic effect of the combination of ZnONPs and PHMB has not been previously explored. The purpose of this study is to explore the synergies of ZnONPs and PHMB and the healing efficacy of ZnO NPs-PHMB-hydrogel on skin wounds in mice infected with Staphylococcus aureus. Therefore, the mice were subjected to skin trauma to create a wound model and were subsequently infected with S. aureus, and then divided into various experimental groups. The repair effect was evaluated by assessing the healing rate, as well as measuring the levels of TNF-α, IL-2, EGF, and TGF-ß1 contents in the tissue. On the 4th and 9th days post-modeling, the Z-P group exhibited notably higher healing rates compared to the control group. However, on the 15th day, both the Z-P and AC groups achieved healing rates exceeding 99%. ZnO NPs-PHMB-hydrogel promoted the formation of a fully restored epithelium, increased new hair follicles and sebaceous glands beneath the epidermis, and markedly reduced inflammatory cell infiltration, which was markedly distinct from the control group. On the 7th day, the Z-P group exhibited significantly higher levels of EGF and TGF-ß1, along with a considerable reduction in the TNF-α levels as compared with the control group. These results affirmed that ZnO NPs-PHMB-hydrogel effectively inhibits S. aureus infection and accelerates skin wound healing.

17.
Toxicol Rep ; 12: 422-429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38618136

RESUMO

Engineered nanomaterials (ENMs) are ubiquitous in contemporary applications, yet their environmental and human health impacts remain inadequately understood. This study addresses the challenge of identifying potential risks associated with ENM exposure by highlighting the significant variability in existing research methodologies. Without a systematic collection of toxicological data that encompasses standardized materials, relevant platforms, and assays, the task of identifying potential risks linked to ENM exposure becomes an intricate challenge. In vitro assessments often use media rich in ionic species, such as RPMI and fetal bovine serum (FBS). Zebrafish embryos, known to develop normally in low-ionic environments, were exposed to Cerium Oxide, Zinc Oxide, and Graphene Oxides in different media at varying concentrations. Here, we discovered that zebrafish embryos tolerated a mix of 80 % RPMI, 2 % FBS, and 1 % antibiotic cocktail. The results revealed that adverse effects observed in zebrafish with certain nanomaterials in Ultra-Pure (UP) water were mitigated in cell culture medium, emphasizing the importance of revisiting previously considered non-toxic materials in vitro. The zebrafish results underscore the importance of utilizing a multidimensional in vivo platform to gauge the biological activity of nanomaterials accurately.

18.
Heliyon ; 10(7): e29150, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601679

RESUMO

A novel eco-friendly high throughput continuous hydrothermal flow system was used to synthesise phase pure ZnO and doped ZnO in order to explore their properties for tissue engineering applications. Cerium, zirconium, and copper were introduced as dopants during flow synthesis of ZnO nanoparticles, Zirconium doped ZnO were successfully synthesised, however secondary phases of CeO and CuO were detected in X-ray diffraction (XRD). The nanoparticles were characterised using X-ray diffraction, Brunauer-Emmett-Teller (BET), Dynamic Light scattering Measurements, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and RAMAN spectroscopy was used to evaluate physical, chemical, and structural properties. The change in BET surface area was also significant, the surface area increased from 11.35 (ZnO_2) to 26.18 (ZrZnO_5). However. In case of CeZnO_5 and CuZnO_5 was not significant 13.68 (CeZnO_5) and 12.16 (CuZnO_5) respectively. Cell metabolic activity analysis using osteoblast-like cells (MG63) and human embryonic derived mesenchymal stem cells (hES-MP) demonstrated that doped ZnO nanoparticles supported higher cell metabolic activity compared to cells grown in standard media with no nanoparticles added, or pure zinc oxide nanoparticles. The ZrZnO_5 demonstrated the highest cell metabolic activity and non-cytotoxicity over the duration of 28 days as compared to un doped or Ce or Cu incorporated nanoparticles. The current data suggests that Zirconium doping positively enhances the properties of ZnO nanoparticles by increasing the surface area and cell proliferation. Therefore, are potential additives within biomaterials or for tissue engineering applications.

19.
Nanomaterials (Basel) ; 14(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607164

RESUMO

Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR and scanning electron microscopy. The electrode's enhanced surface area facilitated the signal amplification of the selected NSAIDs. The CdS-modified glassy carbon electrode (GCE) enhanced the electro-oxidation signals of naproxen to four times that of the bare GCE, while the ZnO-modified GCE led to a two-fold enhancement in the electro-oxidation signals of mobic. The oxidation of both NSAIDs occurred in a pH-dependent manner, suggesting the involvement of protons in their electron transfer reactions. The experimental conditions for the sensing of naproxen and mobic were optimized and, under optimized conditions, the modified electrode surface demonstrated the qualities of sensitivity and selectivity, and a fast responsiveness to the target NSAIDs.

20.
Open Vet J ; 14(1): 545-552, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633155

RESUMO

Background: Nanoparticles are regarded as magical bullets because of their exclusive features. Recently, the usage of nanoparticles has progressed in almost all aspects of science and technology due to its ability to revolutionize certain fields. In the field of food science and technology, the application of nanoparticles is being researched in many various areas thus provides the dairy industry with a variety of new attitudes for developing the quality, prolong shelf life, ensure the safety and healthiness of foods. Aim: This study aimed to focus on the application of some inorganic metal oxide nanoparticles (zinc oxide (ZnO), magnesium oxide (MgO), and calcium oxide (CaO)) to control E. coli in raw milk and ensure its safety. Methods: The antibacterial action of certain nanoparticles (ZnO, MgO, and CaO) with multiple concentrations (0.1, 0.05, 0.025, 0.0125, 0.006, and 0.003 mg/ml) was evaluated against E. coli strains in ultra heat treated (UHT) milk samples. Also, storage temperature and storage period effects were studied. Results: The findings of the current research revealed that inorganic metal oxide nanoparticles had a significant antibacterial role against E. coli, in the following order; ZnO, MgO, and CaO, respectively. The antibacterial effect of inorganic metal oxide nanoparticles is more noticeable at lower temperatures. Conclusion: Inorganic metal nanoparticles can be used in the food industry for the purpose of the control of E. coli, and extension of the shelf life of dairy products.


Assuntos
Compostos de Cálcio , Nanopartículas Metálicas , Óxido de Zinco , Animais , Escherichia coli , Óxido de Magnésio , Leite , Óxidos , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...